Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 8(1): 12, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484162

RESUMO

Bubble nucleation was investigated in a 20-mm-long, wickless heat pipe on the International Space Station. Over 20 h of running experiments using pentane as the working fluid, more than 100 nucleation events were observed. Bubble nucleation at the heater end temporarily boosted peak pressures and vapor temperatures in the device. At the moment of nucleation, the heater wall temperature significantly decreased due to increased evaporation and the original vapor bubble collapsed due to increased pressure. A thermal model was developed and using the measured temperatures and pressures, heat transfer coefficients near the heater end of the system were extracted. Peak heat transfer coefficients during the nucleation event were over a factor of three higher than at steady-state. The heat transfer coefficient data were all collapsed in the form of a single, linear correlation relating the Nusselt number to the Ohnesorge number.

2.
Mater Sci Eng C Mater Biol Appl ; 116: 111247, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806282

RESUMO

In recent years, electrospun polymer fibers have gained attention for various antibacterial applications. In this work, the effect of positively charged polymer fiber mats as antibacterial gauze is studied using electrospun poly(caprolactone) and polyaniline nanofibers. Chloroxylenol, an established anti-microbial agent is used for the first time as a secondary dopant to polyaniline during the electrospinning process to make the surface of the polyaniline fiber positively charged. Both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli are used to investigate the antibacterial activity of the positively charged and uncharged polymer surfaces. The results surprisingly show that the polyaniline surface can inhibit the growth of both bacteria even when chloroxylenol is used below its minimum inhibitory concentration. This study provides new insights allowing the better understanding of dopant-based, intrinsically conducting polymer surfaces for use as antibacterial fiber mats.


Assuntos
Anti-Infecciosos , Nanofibras , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Polímeros , Staphylococcus aureus
3.
ACS Appl Mater Interfaces ; 12(17): 19369-19376, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32275134

RESUMO

Electrospinning is a simple method for producing nanoscale or microscale fibers from a wide variety of materials. Intrinsically conductive polymers (ICPs), such as polyaniline (PANI), show higher conductivities with the use of secondary dopants like m-cresol. However, due to the low volatility of most secondary dopants, it has not been possible to electrospin secondary doped ICP fibers. In this work, the concept of secondary doping has been applied for the first time to electrospun fibers. Using a novel design for rotating drum electrospinning, fibers were efficiently and reliably produced from a mixture of low- and high-volatility solvents. The conductivity of electrospun PANI-poly(ethylene oxide) (PEO) fibers prepared was 1.73 S/cm, two orders of magnitude higher than the average value reported in the literature. These conductive fibers were tested as electrodes for supercapacitors and were shown to have a specific capacitance as high as 3121 F/g at 0.1 A/g, the highest value reported, thus far, for PANI-PEO electrospun fibers.

4.
PLoS One ; 14(6): e0217897, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31170242

RESUMO

Protein-protein interactions are central to biological processes. In vitro methods to examine protein-protein interactions are generally categorized into two classes: in-solution and surface-based methods. Here, using the multivalent interactions between nucleocytoplasmic transport factors and intrinsically disordered FG repeat containing nuclear pore complex proteins as a model system, we examined the utility of three surface-based methods: atomic force microscopy, quartz crystal microbalance with dissipation, and surface plasmon resonance. Although results were comparable to those of previous reports, the apparent effect of mass transport limitations was demonstrated. Additional experiments with a loss-of-interaction FG repeat mutant variant demonstrated that the binding events that take place on surfaces can be unexpectedly complex, suggesting particular care must be exercised in interpretation of such data.


Assuntos
Núcleo Celular/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Sequências Repetitivas de Ácido Nucleico , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Mutação/genética , Ligação Proteica , Técnicas de Microbalança de Cristal de Quartzo , beta Carioferinas/metabolismo
5.
Langmuir ; 33(49): 14066-14077, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29148790

RESUMO

A composite film made of a stable gold nanoparticle (NP) array with well-controlled separation and size atop a TiO2 nanorod film was fabricated via the oblique angle deposition (OAD) technique. The fabrication of the NP array is based on controlled, Rayleigh-instability-induced, solid-state dewetting of as-deposited gold aggregates on the TiO2 nanorods. It was found that the initial spacing between as-deposited gold aggregates along the vapor flux direction should be greater than the TiO2 interrod spacing created by 80° OAD to control dewetting and produce NP arrays. A numerical investigation of the process was conducted using a phase-field modeling approach. Simulation results showed that coalescence between neighboring gold aggregates is likely to have caused the uncontrolled dewetting in the 80° deposition, and this could be circumvented if the initial spacing between gold aggregates is larger than a critical value smin. We also found that TiO2 nanorod tips affect dewetting dynamics differently than planar TiO2. The topology of the tips can induce contact line pinning and an increase in the contact angle along the vapor flux direction to the supported gold aggregates. These two effects are beneficial for the fabrication of monodisperse NPs based on Rayleigh-instability-governed self-assembly of materials, as they help to circumvent the undesired coalescence and facilitate the instability growth on the supported material. The findings uncover the application potential of OAD as a new method to fabricate structured films as template substrates to mediate dewetting. The reported composite films would have uses in optical coatings and photocatalytic systems, taking advantage of their ability to combine plasmonic nanostructures within a nanostructured dielectric film.

6.
Phys Rev Lett ; 118(9): 094501, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306276

RESUMO

A wickless heat pipe was operated on the International Space Station to provide a better understanding of how the microgravity environment might alter the physical and interfacial forces driving evaporation and condensation. Traditional heat pipes are divided into three zones: evaporation at the heated end, condensation at the cooled end, and intermediate or adiabatic in between. The microgravity experiments reported herein show that the situation may be dramatically more complicated. Beyond a threshold heat input, there was a transition from evaporation at the heated end to large-scale condensation, even as surface temperatures exceeded the boiling point by 160 K. The hotter the surface, the more vapor was condensed onto it. The condensation process at the heated end is initiated by thickness and temperature disturbances in the thin liquid film that wet the solid surface. Those disturbances effectively leave the vapor "superheated" in that region. Condensation is amplified and sustained by the high Marangoni stresses that exist near the heater and that drive liquid to cooler regions of the device.

7.
J Colloid Interface Sci ; 488: 48-60, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27821339

RESUMO

Understanding the dynamics of phase change heat and mass transfer in the three-phase contact line region is a critical step toward improving the efficiency of phase change processes. Phase change becomes especially complicated when a fluid mixture is used. In this paper, a wickless heat pipe was operated on the International Space Station (ISS) to study the contact line dynamics of a pentane/isohexane mixture. Different interfacial regions were identified, compared, and studied. Using high resolution (50×), interference images, we calculated the curvature gradient of the liquid-vapor interface at the contact line region along the edges of the heat pipe. We found that the curvature gradient in the evaporation region increases with increasing heat flux magnitude and decreasing pentane concentration. The curvature gradient for the mixture case is larger than for the pure pentane case. The difference between the two cases increases as pentane concentration decreases. Our data showed that the curvature gradient profile within the evaporation section is separated into two regions with the boundary between the two corresponding to the location of a thick, liquid, "central drop" region at the point of maximum internal local heat flux. We found that the curvature gradients at the central drop and on the flat surfaces where condensation begins are one order of magnitude smaller than the gradients in the corner meniscus indicating the driving forces for fluid flow are much larger in the corners.

8.
Phys Rev Lett ; 114(14): 146105, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910141

RESUMO

A counterintuitive, thermocapillary-induced limit to heat- pipe performance was observed that is not predicted by current thermal-fluid models. Heat pipes operate under a number of physical constraints including the capillary, boiling, sonic, and entrainment limits that fundamentally affect their performance. Temperature gradients near the heated end may be high enough to generate significant Marangoni forces that oppose the return flow of liquid from the cold end. These forces are believed to exacerbate dry out conditions and force the capillary limit to be reached prematurely. Using a combination of image and thermal data from experiments conducted on the International Space Station with a transparent heat pipe, we show that in the presence of significant Marangoni forces, dry out is not the initial mechanism limiting performance, but that the physical cause is exactly the opposite behavior: flooding of the hot end with liquid. The observed effect is a consequence of the competition between capillary and Marangoni-induced forces. The temperature signature of flooding is virtually identical to dry out, making diagnosis difficult without direct visual observation of the vapor-liquid interface.

9.
Langmuir ; 31(19): 5377-86, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25874586

RESUMO

The Constrained Vapor Bubble (CVB) experiment concerns a transparent, simple, "wickless" heat pipe operated in the microgravity environment of the International Space Station (ISS). In a microgravity environment, the relative effect of Marangoni flow is amplified because of highly reduced buoyancy driven flows as demonstrated herein. In this work, experimental results obtained using a transparent 30 mm long CVB module, 3 mm × 3 mm in square cross-section, with power inputs of up to 3.125 W are presented and discussed. Due to the extremely low Bond number and the dielectric materials of construction, the CVB system was ideally suited to determining if dry-out as a result of Marangoni forces might contribute to limiting heat pipe performance and exactly how that limitation occurs. Using a combination of visual observations and thermal measurements, we find a more complicated phenomenon in which opposing Marangoni and capillary forces lead to flooding of the device. A simple one-dimensional, thermal-fluid flow model describes the essence of the relative importance of the two stresses. Moreover, even though the heater end of the device is flooded and the liquid is highly superheated, boiling does not occur due to high evaporation rates.

10.
BMC Microbiol ; 13: 241, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24192060

RESUMO

BACKGROUND: Abundant populations of bacteria have been observed on Mir and the International Space Station. While some experiments have shown that bacteria cultured during spaceflight exhibit a range of potentially troublesome characteristics, including increases in growth, antibiotic resistance and virulence, other studies have shown minimal differences when cells were cultured during spaceflight or on Earth. Although the final cell density of bacteria grown during spaceflight has been reported for several species, we are not yet able to predict how different microorganisms will respond to the microgravity environment. In order to build our understanding of how spaceflight affects bacterial final cell densities, additional studies are needed to determine whether the observed differences are due to varied methods, experimental conditions, or organism specific responses. RESULTS: Here, we have explored how phosphate concentration, carbon source, oxygen availability, and motility affect the growth of Pseudomonas aeruginosa in modified artificial urine media during spaceflight. We observed that P. aeruginosa grown during spaceflight exhibited increased final cell density relative to normal gravity controls when low concentrations of phosphate in the media were combined with decreased oxygen availability. In contrast, when the availability of either phosphate or oxygen was increased, no difference in final cell density was observed between spaceflight and normal gravity. Because motility has been suggested to affect how microbes respond to microgravity, we compared the growth of wild-type P. aeruginosa to a ΔmotABCD mutant deficient in swimming motility. However, the final cell densities observed with the motility mutant were consistent with those observed with wild type for all conditions tested. CONCLUSIONS: These results indicate that differences in bacterial final cell densities observed between spaceflight and normal gravity are due to an interplay between microgravity conditions and the availability of substrates essential for growth. Further, our results suggest that microbes grown under nutrient-limiting conditions are likely to reach higher cell densities under microgravity conditions than they would on Earth. Considering that the majority of bacteria inhabiting spacecrafts and space stations are likely to live under nutrient limitations, our findings highlight the need to explore the impact microgravity and other aspects of the spaceflight environment have on microbial growth and physiology.


Assuntos
Carga Bacteriana , Carbono/metabolismo , Oxigênio/metabolismo , Fosfatos/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Voo Espacial , Meios de Cultura/química , Locomoção , Pseudomonas aeruginosa/fisiologia , Ausência de Peso
11.
PLoS One ; 8(4): e62437, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658630

RESUMO

Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.


Assuntos
Biofilmes/crescimento & desenvolvimento , Meios de Cultura/química , Pseudomonas aeruginosa/ultraestrutura , Voo Espacial , Ausência de Peso , Carbono/metabolismo , Contagem de Colônia Microbiana , Flagelos/metabolismo , Flagelos/fisiologia , Flagelos/ultraestrutura , Humanos , Viabilidade Microbiana , Fosfatos/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo
12.
Adv Colloid Interface Sci ; 168(1-2): 40-9, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21470588

RESUMO

Using the disjoining pressure concept in a seminal paper, Derjaguin, Nerpin and Churaev demonstrated that isothermal liquid flow in a very thin film on the walls of a capillary tube enhances the rate of evaporation of moisture by several times. The objective of this review is to present the evolution of the use of Churaev's seminal research in the development of the Constrained Vapor Bubble (CVB) heat transfer system. In this non-isothermal "wickless heat pipe", liquid and vapor flow results from gradients in the intermolecular force field, which depend on the disjoining pressure, capillarity and temperature. A Kelvin-Clapeyron model allowed the use of the disjoining pressure to be expanded to describe non-isothermal heat, mass and momentum transport processes. The intermolecular force field described by the convenient disjoining pressure model is the boundary condition for "suction" and stability at the leading edge of the evaporating curved flow field. As demonstrated by the non-isothermal results, applications that depend on the characteristics of the evaporating meniscus are legion.

13.
Langmuir ; 21(18): 8188-97, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16114921

RESUMO

An optical technique based on the reflectivity measurements of a thin film was used to experimentally study the spreading, evaporation, contact line motion, and thin film characteristics of drops consisting of a water-surfactant (polyalkyleneoxide-modified heptamethyltrisiloxane, called superspreader) solution on a fused silica surface. On the basis of the experimental observations, we concluded that the surfactant adsorbs primarily at the solid-liquid and liquid-vapor interfaces near the contact line region. At equilibrium, the completely wetting corner meniscus was associated with a flat adsorbed film having a thickness of approximately 31 nm. The calculated Hamaker constant, A = -4.47 x 10(-)(20) J, shows that this thin film was stable under equilibrium conditions. During a subsequent evaporation/condensation phase-change process, the thin film of the surfactant solution was unstable, and it broke into microdrops having a finite contact angle. The thickness of the adsorbed film associated with the drops was lower than that of the equilibrium meniscus. The drop profiles were experimentally measured and analyzed during the phase-change process as the contact line advanced and receded. The apparent contact angle, the maximum concave curvature near the contact line region, and the convex curvature of the drop increased as the drop grew during condensation, whereas these quantities decreased during evaporation. The position of the maximum concave curvature of the drop moved toward the center of the drop during condensation, whereas it moved away from the center during evaporation. The contact line velocity was correlated to the observed experimental results and was compared with the results of the drops of a pure alcohol. The experimentally obtained thickness profiles, contact angle profiles, and curvature profiles of the drops explain how the surfactant adsorption affects the contact line motion. We found that there was an abrupt change in the velocity of the contact line when the adsorbed film of the surfactant solution was just hydrated or desiccated during the phase-change processes. This result shows the effect of vesicles and aggregates of the surfactant on the shape evolution of the drops. For these surfactant-laden water drops, we found that the apparent contact angle increased during condensation and decreased during evaporation. However, for the drop of a pure liquid (n-butanol and 2-propanol) the apparent contact angle remained constant at a constant velocity during condensation and evaporation. The contact line was pinned during the evaporation and spreading of the surfactant-laden water drops, but it was not pinned for a drop of a pure alcohol (self-similar shape evolution).


Assuntos
Tensoativos/química , Estrutura Molecular , Soluções , Temperatura , Volatilização
14.
Langmuir ; 21(10): 4458-63, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16032860

RESUMO

The ability to pattern different polymers in microfluidic channels is indispensable for the development of multifunctional, "lab-on-a-chip" devices. A simple method, based on the concept of selective filling, is described for introducing different polymers at defined locations in microfluidic channels. Selective filling is based on the difference in the free energy of filling between an open and a covered part of the channel. It is implemented by covering part of the channel, along its length, with a temporary poly(dimethylsiloxane) (PDMS) slab. Preferential filling is related to the contact angle of the liquid solution on the chip surface. An expression for the critical contact angle is derived, and its dependence on the geometry of the channel is established. It is further shown that a trapezoidal geometry of the cross-section of the channel is optimal for selective filling. Experimental verification of the applicability of the critical contact angle in predicting selective filling is demonstrated by introducing liquid prepolymer solutions of different contact angles in the glass channel that was etched using photolithography and wet etching. Finally, patterning of two different polymers along the axial direction of the microfluidic channel is demonstrated using this selective filling technique.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 1): 051610, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15600631

RESUMO

Image analyzing interferometry is used to study the details of the evolving shapes and coalescence of two condensing drops of 2-propanol on a quartz surface. The measured thickness profiles give fundamental insights into the transport processes within the drops before and after coalescence and the evolution of the coalesced drop from asymmetric to symmetric shape. The results indicate that the constant value of the adsorbed film thickness between the drops and profiles of the local thickness, slope angle, curvature, and curvature gradient govern the pressure fields in the coalescing drops. The shape evolution after coalescence is found to be driven by the capillary forces within the drop. Using the experimental data, we find that the calculations of the average shear stress for the fluid flow between the drops, the decrease in the interfacial excess energy, and the positions of the center of mass of the drops explain the physics of the coalescence phenomenon. However, the flow field is found to be complex because the pressure field indicates that there are complicated flows within the drop.

16.
Ann N Y Acad Sci ; 1027: 317-29, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15644365

RESUMO

In preparation for a microgravity flight experiment on the International Space Station, a constrained vapor bubble fin heat exchanger (CVB) was operated both in a vacuum chamber and in air on Earth to evaluate the effect of the absence of external natural convection. The long-term objective is a general study of a high heat flux, low capillary pressure system with small viscous effects due to the relatively large 3 x 3 x 40 mm dimensions. The current CVB can be viewed as a large-scale version of a micro heat pipe with a large Bond number in the Earth environment but a small Bond number in microgravity. The walls of the CVB are quartz, to allow for image analysis of naturally occurring interference fringes that give the pressure field for liquid flow. The research is synergistic in that the study requires a microgravity environment to obtain a low Bond number and the space program needs thermal control systems, like the CVB, with a large characteristic dimension. In the absence of natural convection, operation of the CVB may be dominated by external radiative losses from its quartz surface. Therefore, an understanding of radiation from the quartz cell is required. All radiative exchange with the surroundings occurs from the outer surface of the CVB when the temperature range renders the quartz walls of the CVB optically thick (lambda > 4 microns). However, for electromagnetic radiation where lambda < 2 microns, the walls are transparent. Experimental results obtained for a cell charged with pentane are compared with those obtained for a dry cell. A numerical model was developed that successfully simulated the behavior and performance of the device observed experimentally.


Assuntos
Ausência de Peso , Convecção , Planeta Terra , Temperatura Alta , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Pressão , Voo Espacial , Astronave , Temperatura
17.
Adv Colloid Interface Sci ; 104: 175-90, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12818495

RESUMO

Image-analyzing interferometry was used to investigate the dynamics of the dewetting meniscus of a partially wetting fluid on a modified quartz surface during dropwise condensation. The vivid difference in the behavior of the retracting meniscus with respect to its variation in apparent contact angle and curvature after the merger of the drop with the meniscus was found to depend on the wettability of the surface. On the hydroxylated quartz surface, the meniscus shed mass during retraction. The dewetting velocity decreased with time. On a slightly hydrophobic quartz surface, the meniscus showed a curvature gradient in the axial direction during drop merger and that gradient decreased as the meniscus moved towards the corner. The dewetting of the meniscus is discussed using the interfacial concepts of spreading and the Kelvin-Clapeyron phase change model.

18.
J Colloid Interface Sci ; 259(2): 354-66, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16256516

RESUMO

Image-analyzing interferometry is used to measure the apparent contact angle and the curvature of a drop and a meniscus during condensation and evaporation processes in a constrained vapor bubble (CVB) cell. The apparent contact angle is found to be a function of the interfacial mass flux. The interfacial velocity for the drop during condensation and evaporation is a function of the apparent contact angle and the rate of change of radius of curvature. The dependence of velocity on the apparent contact angle is consistent with Tanner's scaling equation. The results support the hypothesis that evaporation/condensation is an important factor in contact line motion. The main purpose of this article is to present the experimental technique and the data. The equilibrium contact angle for the drop is found experimentally to be higher than that for the corner meniscus. The contact angle is a function of the stress field in the fluid. The equilibrium contact angle is related to the thickness of the thin adsorbed film in the microscopic region and depends on the characteristics of the microscopic region. The excess interfacial free energy and temperature jump were used to calculate the equilibrium thickness of the thin adsorbed film in the microscopic region.

19.
Ann N Y Acad Sci ; 974: 274-87, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12446330

RESUMO

Microgravity experiments on the constrained vapor bubble heat exchanger (CVB) are being developed for the space station. Herein, ground-based experimental studies on condensate removal in the condenser region of the vertical CVB were conducted and the mechanism of condensate removal in microgravity was found to be the capillary force. The effects of curvature and contact angle on the driving forces for condensate removal is studied. The Nusselt correlations are derived for the film condensation and the flow from the drop to the meniscus at the moment of merging. These new correlations scale as forced convection with h proportional to L(1/2) or h proportional to L(1/2)(cd). For the partially wetting ethanol system studied, the heat transfer coefficient for film condensation was found to be 4.25 x 10(4) W/m(2)K; for dropwise condensation at moment of merging it was found to be 9.64 x 10(4) W/m(2)K; and for single drops it was found to be 1.33 x 10(5) W/m(2)K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...